KUWAIT UNIVERSITY

Department of Mathematics & Computer Science

Math 102 Calculus B

Final Exam

22 Jan 2009 Two hours

Calculators and mobile phones are not allowed in the exam.

1. Let f be a one-to-one differentiable function such that f(2) = 3, f'(2) = 5, f'(3) = 4. If $g = f^{-1}$, what is g'(3)?

- [2 pts]
- 2. Show that if f is one-to-one, then $g(x) = e^{f(x)}$ is also one-to-one.
- 2 pts

3. Show that if $\cos(\arctan a) = \tan(\arccos a)$, then $2a^2 = \sqrt{5} - 1$.

- 3 pts
- 4. The figure below shows the graphs of the polar equations $r = \cos \theta$ and $r = \sin 2\theta$. Find the area of the region that lies inside both curves. 4 pts

- 5. A curve C has parametrization $x = 2t^3 6t$; $y = 2t^3 + 3t^2$, where $-1 \le t \le 1$. Find the coordinates of the points on C at which the tangent line has slope 1/3. 3 pts
- 6. Find the arc length of the curve C whose parametric equations are

[3 pts]

$$x = \ln \sqrt{1 + t^2}, \quad y = \tan^{-1} t, \quad t \in [0, 1]$$

7. Evaluate the following integrals:

[16 pts]

(a)
$$\int \frac{\sin x}{1 + \sin x - \cos x} dx$$
 (b)
$$\int \frac{1}{x^2} \sin^{-1} x dx$$

(c)
$$\int \frac{4}{\sin^2 x + (1 + \cos x)^2} dx$$
 (d) $\int \frac{\sqrt[4]{x+9}}{1 + \sqrt{x+9}} dx$

(d)
$$\int \frac{\sqrt[4]{x+9}}{1+\sqrt{x+9}} dx$$

8. Does the following integral converge or diverge? If it converges, find its value. 4 pts

$$\int_{-\pi/2}^{\pi/2} \frac{\sin 2x}{\sqrt[3]{\sin^4 x}} dx$$

Answer as true (T) or false (F) and justify your answer.

[3 pts]

- (a) If f is continuous, then f is one-to-one.
- (b) If $(\ln a)^2 = (\ln b)^2$, then a = b.

Solutions:

- 1. g(3) = 2 since f(2) = 3. Hence, g'(3) = 1/f'(g(3)) = 1/f'(2) = 1/5.
- 2. Using the fact that f and e^x are one-to-one functions, if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ and hence $e^{f(x_1)} \neq e^{f(x_2)}$. Therefore, by definition, e^f is one-to-one.
- 3. $\theta_1 = \arctan a \rightarrow \tan \theta_1 = a \rightarrow \cos \theta_1 = 1/\sqrt{1+a^2}$ and $\theta_2 = \arccos a \rightarrow \cos \theta_2 = a \rightarrow \tan \theta_2 = \sqrt{1-a^2}/a$. Equate the two to get $a^2 = 1 a^4$ or $a^4 + a^2 1 = 0$, then solve for a^2 .
- 4. The intersection points we obtain from $\cos\theta (1-2\sin\theta)=0$. By symmetry, we consider the first quadrant, where the curves intersect at $\theta=\pi/2$ and $\theta=\pi/6$. The area inside both curves becomes

$$A = 2(A_1 + A_2) = 2\left(\frac{1}{2} \int_0^{\pi/6} \sin^2 2\theta \, d\theta + \frac{1}{2} \int_{\pi/6}^{\pi/2} \cos^2 \theta \, d\theta\right) \quad \to$$

$$A = \frac{1}{2} \int_0^{\pi/6} (1 - \cos 4\theta) \, d\theta + \frac{1}{2} \int_{\pi/6}^{\pi/2} (1 + \cos 2\theta) \, d\theta = \dots = \frac{\pi}{4} - \frac{3}{8} \sin \frac{\pi}{3} = \frac{\pi}{4} - \frac{3\sqrt{3}}{16}$$

5. $x = 2t^3 - 6t \rightarrow \dot{x} = 6t^2 - 6$; $y = 2t^3 + 3t^2 \rightarrow \dot{y} = 6t^2 + 6t$. The slope is given by

$$m(t) = \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{t^2 + t}{t^2 - 1} = \frac{t(t+1)}{(t-1)(t+1)} = \frac{t}{t-1}, \quad t \neq -1$$

From m(t) = 1/3 we get t = -1/2 and the point where the slope is 1/3 has coordinates (11/4, 1/2).

6. $x = (1/2) \ln(1+t^2) \rightarrow \dot{x} = t/(1+t^2)$; $y = \tan^{-1}t \rightarrow \dot{y} = 1/(1+t^2)$. The arc length:

$$L = \int_0^1 \frac{\sqrt{1+t^2}}{1+t^2} dt = \int_0^1 \frac{1}{\sqrt{1+t^2}} dt = \int_0^{\pi/4} \sec\theta \, d\theta = \ln(1+\sqrt{2})$$

using the trigonometric substitution $t = \tan \theta$.

7. (a) Think like Weierstrass and put $u = \tan(x/2)$:

$$\int \frac{\sin x}{1 + \sin x - \cos x} dx = \int \frac{2}{(u^2 + 1)(u + 1)} du = \int \left[\frac{1}{u + 1} + \frac{1 - u}{u^2 + 1} \right] du$$
$$= \ln|u + 1| - \frac{1}{2} \ln(u^2 + 1) + \tan^{-1} u + C$$
$$= \ln|\tan(x/2) + 1| - \frac{1}{2} \ln\left(\tan^2(x/2) + 1\right) + \tan^{-1}\left(\tan(x/2)\right) + C$$

(b) Integrate by parts with $u = \sin^{-1} x$ and $dv = dx/x^2$:

$$\int \frac{\sin^{-1} x}{x^2} \, dx = -\frac{\sin^{-1} x}{x} + \int \frac{1}{x\sqrt{1-x^2}} \, dx$$

Put $x = \sin \theta$:

$$\int \frac{1}{x\sqrt{1-x^2}} dx = \int \frac{1}{\sin\theta \cos\theta} \cos\theta d\theta = \int \csc\theta d\theta = \ln|\csc\theta - \cot\theta| + C$$

$$= \ln|1 - \sqrt{1 - x^2}| - \ln|x| + C \quad \to$$

$$\int \frac{\sin^{-1} x}{x^2} dx = -\frac{\sin^{-1} x}{x} + \ln|1 - \sqrt{1 - x^2}| - \ln|x| + C$$

(c) $\sin^2 x + (1 + \cos x)^2 = 1 - \cos^2 x + 1 + 2\cos x + \cos^2 x = 2 + 2\cos x$ so that

$$\int \frac{4}{\sin^2 x + (1 + \cos x)^2} dx = \int \frac{2}{1 + \cos x} dx = 2 \int \frac{1 - \cos x}{\sin^2 x} dx$$
$$= 2 \int (\csc^2 x - \csc x \cot x) dx = 2 (\csc x - \cot x) + C$$

(d) Let $u^4 = x + 9$ then $dx = 4u^3$ and the integral becomes

$$\int \frac{\sqrt[4]{x+9}}{1+\sqrt{x+9}} dx = 4 \int \frac{u^4}{1+u^2} du = 4 \int \left(u^2 - 1 + \frac{1}{1+u^2}\right) du$$
$$= 4 \left(\frac{u^3}{3} - u + \tan^{-1} u\right) + C = 4 \left(\frac{(\sqrt[4]{x+9})^3}{3} - \sqrt[4]{x+9} + \tan^{-1}(\sqrt[4]{x+9})\right) + C$$

8. Do the integral first

$$\int \frac{\sin 2x}{\sqrt[3]{\sin^4 x}} \, dx = \int 2 \frac{\sin x}{(\sin x)^{4/3}} \cos x \, dx = 2 \int (\sin x)^{-1/3} \cos x \, dx = 3 (\sin x)^{2/3}$$

The definite integral becomes

$$\int_{-\pi/2}^{\pi/2} \dots = \int_{-\pi/2}^{0} \dots + \int_{0}^{\pi/2} \dots = \lim_{s \to 0^{-}} \int_{-\pi/2}^{s} \dots + \lim_{t \to 0^{+}} \int_{t}^{\pi/2} \dots = -3 + 3 = 0$$

- 9. (a) False: $f(x) = \sin x$ is continuous on \mathbb{R} but not one-to-one.
 - (b) False: a may equal to either b or 1/b.